
OBJECT-ORIENTED PROGRAMMING WITH MIXINS IN ADA

f

INTRODUCTION

Ed Seidewitz

Goddard Space Flight Center
Code 552.2

Greenbelt MD 20771

...... (301).286-7631
esetoewlrzcwgsrcma..nasa.gov

N98- 1o
My guess is that object-oriented programming will be in the
1980s what structured programming was in the 1970s.
Everyone will be in favor of it. Every manufacturer will
promote his products as supporting it. Every manager will
pay lip service to it. Every programmer will practice it. And
no one will Imow just what it is.

[Ren_h 82l

Recently, I wrote a paper discussing the lack of "true" object-oriented programming language features in
Ada 83, why one might desire them in Ada and how they might be added in Ada 9X lSeidewitz91l. The approach I
took in this paper was to build the new object-oriented features of Ada 9X as much as possible on the basic
constructs and philosophy of Ada 83. The object-oriented features proposed for Ada 9X [Ada9X 91hi, while different
in detail, are based on the same kind of approach.

Further co .nsideration of this approach !._. me on .a long reflection on the natm_ of object-orien, ted programming
and its appficauon to Ada. The results of this reflecuon, presented m this paper, show how a fairly natural object-
oriented style can indeed be developed even in Ada 83. The exercise of developing this style is useful for at least
three reasons:

1. It provides a useful style for programming object-oriented applications in Ada 83 until new features become
available with Ada 9X;

2. It demystifies many of the mechanisms that seem to be "magic" in most object-oriented programming languages
by making them explicit; and

3. It points out areas that are and are not in need of change in Ada 83 to make object-oriented programming more
natural in Ada 9X.

In the next four sections I will address in turn the issues of object-oriented classes, mixins, serf-reference and
supertyping. The presentation is through a sequence of examples, similar to those in ISeidewitz91]. This results in
some overlap with that paper, but all the examples in the present paper are written entirely in Ada 83. I will return
to considerations for Ada 9X in the last secdon of the paper.

CLASSES

An object represents a component of...[a] software system...
An object consists of some private memory and a set of
operations...A crucial property of an object is that its private
memory can be manipulated only by its operations...A class
describes the implementation of a set of objects that all
represent the same kind of system component.

[Goldbergand Rob=on 831

In Ada, an object is a variable or a constant that contains a value. The declared type of the object determines
the set of possible values for the object and the set of operations that may be applied to the object. If this type is a
private type, then the value of the object may only be changed through application of an operation. This
corresponds to the object-oriented notion of a class.

Consider, for example, a simple f'maneial account class implemented us a private type:

with Finance_Types; use Finance_Typest
package Finance is

type ACCOUNT is limited private;

procedure Open (The Account : in out ACCOUNT;
With Balance : in MONEY) ;

63

10005788L
PRECEDING PAGE ;:; ANK t-._OT F',L_D

procedure Deposit (Into Account : in out ACCOUNT;
The Amount : in MONEY);

procedure Withdraw (From_Account : in out ACCOUNT;
The Amount : in MONEY);

function Balance_Of (The_Account : ACCOUNT) return MONEY;

private

type ACCOUNT is
record

Balance : MONEY

end record;

:= 0.00;

end Finance;

The _q_ Finance.ACCOUNT re_ts a c_ss of account obits. The subp_ defined in package

Finance are the allowable operations on objects of this class. The body of this package is straightforward. Note
that for simplicity I will assume that a number of simple types (such as MONEY)are defined in a Finance_Types
package.

The class defined by package Finance pmvid_ a simple but very general abswaction. In an object-oriented

approach, such Seneral classes are used as the basis for implementing more spec__ _tzed.classes. For example, a
savings account L_ a specific kind of account mat holds savings mat earn interest, umer man some new operauons
associated with earning interest, a savings account is the same as the original general financial account. Thus we

should be able to implement a savings account in terms of a general account

with Finance_Types; use Finance_Types;

package Savings is

type ACCOUNT is limited private;

procedure Open (The Account : in out ACCOUNT;
With Balance : in MONEY);

procedure Set_Rate (Of_Account : in out ACCOUNT;
To Rate : in RATE);

procedure Deposit (Into_Account : in out ACCOUNT;
The Amount : in MONEY);

procedure Withdraw (From_Account : in out ACCOUNT;
The Amount : in MONEY);

procedure Earn_Interest (On_Account : in out ACCOUNT;
Over Time : in INTERVAL);

function Balance_Of (The_Account : ACCOUNT) return MONEY;

function Interest_On (The_Account : ACCOUNT) return MONEY;

private

type ACCOUNT is
record

Parent : Finance.ACCOUNT;

Rate : RATE := 0.06;

Interest : MONEY := 0.00;

end record;

end Savings ;

Vv]_ile this may not seem to gain us a lot in this simple example, such incremental extension of abstractions is
fundamental to object-oriented techniques. The class of financial accounts is said to be the superclass of the class of
savings accounts. Each savings account (of type Savings. ACCOUNT) has a unique pcv'ent financial account (of
type Finance. ACCOUNT).

Now, 0wee of the seven savings account operations (Open, Deposit and Withdraw) are synLacticaUy and

semantically the same as the correstxmding financial account operations. Thus, we would like to i.her/t these
financial account operations. Ada 83 has no direct way of doing this. Nevertheless, we can achieve the effect of
inheritance for our present purposes by using call-through subprograms. For example, the Savings .Deposit

6-4

1OO057881.

procedure Deposit

begin

operarlon can easily be implemented as follows:

(Into Account :in out ACCOUNT;
The Amount : in MONEY) is

Finance.Deposit (Into_Account.Parent, The_Amount)

end Deposit;

The expense of such caU-fl_oughs may be nunhn_ed through the use of pmgma Inline.

Three otheT savings account operations (Set Rate, Earn Interest and Interest_On) provide the
incremental new functionality of the savings account subclass. "l_ese operations are implemented in terms of the

additional components of the mpm_nmfim of type Savings. ACCOUNT. For example:

procedure Earn Interest (On_Account : in out ACCOUNT;
-- Over Time : in INTERVAL) is

Balance : constant MONEY :- Balance_Of (On_Account);

begin

if Balance > 0.00 then

On Account. Interest

end if;

:- On Account. Interest

+ Baiance*On_Account.Rate*Over_Time;

end Earn Interest;

No_ thatthe Balance_Of operation used here i_the subchk_ operation Savings. Balance_Of.

The remaining savings account operation, Balance Of, i$ syntactically the same as the financial account

operation, but it is semantically dLffm_mL The balance o-f a savings account includes intew._t earned up to the
present point in time:

function Balance_Of (The_Account : ACCOUNT) return MONEY is

begin

return Finance.Balance Of (The_Account.Parent)
+ The Account. Interest;

end Balance_Of ;

No_ thatwh_e Balance_Of isnot a ca_-through operation,the supefcL_ssoperatio, Finance. Balance_Of is

used m itsimplemenU1fion.

The usefulness of a superclass like the financial account class comes from the fact that it can provide a common
basis for a number of subclasses. For example, a class of checking accounts may provide anotfi_ subclass of

financial accounts:

with Finance;

with Finance_Types; use Finance_Types;
package Checking is

type ACCOUNT is limited private;

procedure Open (The Account : in out ACCOUNT;
With Balance : in MONEY);

procedure Set_Fee (Of_Account : in out ACCOUNT;
To Fee : in MONEY);

procedure Deposit (Into Account : in out ACCOUNT;
The Amount : in MONEY);

procedure Withdraw (From_Account : in out ACCOUNT;
The Amount : in MONEY);

function Balance_Of (The_Account : ACCOUNT) return MONEY;

private

_5

10006788L

type ACCOUNT is
record

Parent : Finance.ACCOUNT;
Overdraft Fee : MONEY := 10.00;

end record;

end Checking;

In this simple example, the only difference between checking accounts and financial accounts is that
overdrawing a checking account is not permitted. Further, each overdraft attempt (i.e, a reprised check) is penalized
by deducting a fee from the account. Thus, the implementation of Withdraw must be changed for checking
accounts:

procedure Withdraw (From_Account : in out ACCOUNT;
The Amount : in MONEY) is

begin

if The Amount <- Balance Of(From_Account) then

Finance.Withdraw (From--Account.Parent, The_Amount);

else

Finance.Withdraw (From_Account.Parent,

From_Account.Overdraft_Fee);
end if;

end Withdraw;

The savings account and checking account subclasses of the financial account class may themselves act as
superclasses for even more specialized classes. Thus, a general class may be the root of a quite extended class
hierarchy. Each subclass in the hierarchy incrementally extends the capabilities of its superclass, while inheriting
common functionality.

MIXINS

A mbun is..n subclass definition that may be applied to
e_:nt superclasses to create a related family of modified

$.

[BrachA _d Cook 90]

A superclass may be used as the base for many subclasses. However, as described so far, a subclass is tied to
one superclass. For instance, savings accounts are based specifically on the class defined by package Finance.
There may be other types of accounts to which we want to added interest-bearing functionality such as that defined
for savings accounts. For example, an interest-bearing chec.king account is basically a checking account with
interest-bearing functionality added to it (or, alternatively, a sawngs account with checking functionality added).

Rather than recoding essentially the same interest-bearing functionality each time it is needed, we can capture
this functionality in a generic package that takes a specific superclass as a parameter:.

with Finance_Types; use Finance_Types;

generic

type SUPERCLASS is limited private;

with function Balance_Of (The_Account : SUPERCLASS) return MONEY is <>;

package Interest is

type HIXIN is limited private;

type ACCOUNT is
record

Parent : SUPERCLASS;

Extension : MIXIN;

end record;

procedure Set_Rate (Of_Account : in
To Rate : in

out ACCOUNT;

RATE);

procedure Earn Interest (On Account : in
-- Over Time : in

out ACCOUNT;

INTERVAL);

function Balance_Of (The_Account : ACCOUNT)

6-6

return MONEY;

I000S788L

function Interest_On (TheAccount : ACCOUNT)return MONEY;

private

type MIXIN is
record

Rate : RATE :- 0.06;

Interest : MONEY :- 0.00;

end record;

end Interest;

A generic package such as this is called a m/_. becauseit provides an increment of functionality which may be
"mixed-into" aay superclass that has the o_ratio.s required to rdl in the genericI_mmeters. Typically, mixins are
used within a framework of multiple inheritance. For example, we can reconmruct the savings account class by
inheriting from both the financial account class and an appropriate instantiafion of the interest mixin:

with Finance, Interest;

with Finance_Types; use Finance_Types;
package Savings is

type ACCOUNT is limited private;

procedure Open (The_Account : in Out ACCOUNT;
With Balance : in MONEY) ;

function Interest_On (The_Account : ACCOUNT) return MONEY;

private

package Savings Interest is
new Interest _Finance.ACCOUNT, Finance.Balance_Of);

type ACCOUNT is new Savings_Interest.ACCOuNT;

end Savings;

The Parent component of the ACCOUNT type defined in mixin Interest is used to inherit from the parent
superclass Finance via a call-through. For example:

procedure Open (The_Account : in out ACCOUNT;
With Balance : in MONEY) is

begin

Finance.Open (The_Account.Parent, With_Balance);

end Open;

The record type Savings_Interest. ACCOUNT isdefinedasa visible, ratherthana private, typein the mixin to
allow access to the Parent component Note that it would not be possible to replace this use of a visible record
component with a function that r_ums the parent object, because we need to use the parent as an in out
parameter. The type MIXIN is never used itself outside of the mixin package.

Call-through subprograms arc also needed to inherit from the mixin instantiation Savings_Interest. This
is because the equivalent derived subprograms obtained from the derived type detrmition of Savings .ACCOUNT
are hidden by the operations declared in the package specification, and in Ada 83 there must be a full subprogram
body for each of these declarations. For example:

function Interest_On (The_Account : ACCOUNT) return MONEY is

begin

return Savings_Interest.Interest On

(Savings_Interest.ACCOUNT(The_Account));

end Interest On;

Having introduced the concept of mixins, we can, of course, also create a mixin that embodies the overdraft
functionality of the checking account class:

10005788L

6-7

with Finance_Types; use Finance_Types;

generic

type SUPERCLASS is limited private;

with procedure Withdraw (From Account : in out SUPERCLASS;
The Amount : in MONEY) is <>;

with function Balance_Of (The_Account :

package Draft is

type MIXIN is limited private;

type ACCOUNT is
record

Parent : SUPERCLASS;

Extension : MIXIN;

end record;

SUPERCLASS) return MONEY is <>;

procedure Set_Fee (Of_Account
To Fee

procedure Withdraw

: in out ACCOUNT;

: in MONEY);

(From_Account : in out ACCOUNT;
The Amount : in MONEY);

private

type MIXIN is
record

Overdraft Fee
end record;--

: MONEY :- I0.00;

end Draft;

Even our ofigb_ fmandal account class can be converted m a m_n:

with Finance_Types; use Finance_Types;
generic

type SUPERCLASS is limited private;

package Monetary is

type MIXIN is limited private;

type ACCOUNT is
record

Parent : SUPERCLASS;

Extension : MIXIN;

end record;

procedure Open (The Account : in out ACCOUNT;
With Balance : in MONEY);

function

private

type MIXIN is
record

Balance

end record;

Balance_Of (The_Account : ACCOUNT)

: MONEY :ffi0.00;

return MONEY;

end Monetary;

Of course, this mixin does not reqtfire any superclass functionality to implement its operations. However, use of the
mixin consUuct allows monetary account functionality to be mixed into any class.

The use of mixins causes Iraditional class hierarchies to collapse into pieces. Each piece is a mixin that
provides a well-defined increment of functionality. We can then form specific classes from these pieces by
instanliating a number of mixins and inheriting all necessary functionality from them. To provide a definite starting

6-8

10006788L

point for this process, we can de/me a root class that basically does nothing more than provide an empty record to
which we can add mixins:

package Root is

type CLASS is limltedprivate;

private

type CLASS is
record

null;
end record;-

end Root;

While this root class seems a bit pointless, the concept will prove useful in the next section.

At last we are ready to construct an interest-bearing checking account class without rewriting any savings
account or checking account functionality. To do this, we simply mix together interest, draft and monetary account

functionality.AH Interest_Bearing_Checking. ACCOUNT operations are implemented as _-fl_oughs to

various mixin operations. T_us, from L_¢ 0uce mixins Monetary, Interest and Draft, we can easily

consUuct an interest-bearing checking account class, as well as recon.m'trting our original financial, savings and
checking account classes.

Of course, in the actual Interest Bearing_Checking package, the three _ generics must be
instantiated in a specific sequential order. Tn the present case, we must first establish the basic monetary account
functionality, then mix in interest and draft functionality. This results in the following implementation:

with Root, Monetary, Interest, Draft;

with Finance_Types; use Finance_Types;

package Interest_Bearing_Checking is

type ACCOUNT is llmitedprivate;

procedure Open (The Account : in out ACCOUNT;

With Balance : in MONEY);

function Interest_On (The_Account

private

package Checking_Finance is

new Monetary (Root.Class);

: ACCOUNT) return MONEY;

-- Basic financial account

package Checking_Interest is -- Mix in interest functionality

new Interest (Checking_Finance.ACCOUNT, Checking_Finance.Balance_Of);

procedure Withdraw (From Account
The Amount

-- call-through to Finance.Withdraw

: in out Checking_Interest.ACCOUNT;
: in MONEY);

package Checking Draft is -- Mix in overdraft fee functionality

new Draft (Checking Interest.ACCOuNT,
Withdraw,

Checking_Interest.Balance_Of);

type ACCOUNT is new Checking_Draft.ACCOUNT;
-- Private type representation

end InterestBearing_Checking;

Note that all the mixins are instantiated in the private part of the specifgation. Each instantiation uses the type and

subprograms from the previous instantiation as arguments. The intermediate procedure Withdraw for type

Checking Interest.ACCOuNT is necessary because the instantiated mixin Checking_Interest only

provides the m_st-rel,_d operations on Checking_Interest. ACCOUNT. Itish_plemen_d as shnply a c_l-
flEough W Finance. Withdraw.

I0005788L

_9

SELF-REFERENCE

When an object of a given class is created its state components

include those of the class and all its superclasses and it can

perform operations of the class and its superclasses on the
component state. References to "self' in operations of a

superclass refer to the composite object on behalf of which the

operation is to be performed.
[Wegner 87]

In the interest-bearing checking account package at the end of the last section, the Interest mixin was
installtiated before the Draft mixin. It would seem that we could equally well have iustantiated them in the

opposite ¢xder.

with ROOt, Monetary, Interest, Draft;

with Finance_Types; use Finance_Types;

package Interest_Bearing_Checking is

type ACCOUNT is limited private;

procedure Open (The Account : in out ACCOUNT;
With Balance : in MONEY);

function Interest_On (The_Account

private

package Checking_Finance is
new Monetary (Root.Class);

package Checking_Draft is

: ACCOUNT) retuEn MONEY;

-- Basic financial account

-- Mix in overdraft fee functionality

new Draft (Checking_Finance.ACCOUNT, Checking_Finance.Withdraw,

Checking_Finance.Balance_Of);

function Balance_Of (The_Account : in CheckingDraft.ACCOUNT)
return MONEY;

-- call-through to Finance.Balance_Of

package Checking_Interest is -- Mix in interest functionality

new Interest (Checking_Draft.ACCOUNT, Balance_Of);

type ACCOUNT is new Checking_Interest.ACCOUNT;
-- Private type representation

end Interest_Bearing_Checking;

Unfortunately, it turns out that this introduces a subtle error, as follows:

• In the new implementation, the Draft mixin is instantiated before the Interest mixin, using the
Checking_Finance. Balance_Of opcmfion.

• The hnplernenmtion of the Withdraw operation in the Draft mixin USeS the Balance Of operation given
as a generic fonnal supercLass operation to determine if there is an overdmfL In-/his case, the actual

subprogram used is Checking_Finance. Balance__Of, which does not add in any earned inte_st

• The Interest Bearing_Checking.Withdraw operation is inhc_/ted from the instandation

Checking_Dra f-tof the Draft mixin, so as to inc|ude the overdraft functionafity. This means that

accumulatedinterest is ignored when checking for an overdraft This is clearly unfair to the customer!

The problem is that we do not really want to use the superclass Balance__Of .operation in the Draft mixin"
instantiation. Rather, we need to use the Balance Of operation from the compostte subclass being constructed.

However, we cannot use the.subclass type Interest Bearing_Checking .ACCOUNT in the instantiation of
the Draft mixin, because that type cannot be fully defined yeL Thus, we must instead be sure to instantiate the

Interest mixin fu-st, so that the interest-bearing functionality is mixed into the Balance_Of operation before
Draft _ ms_nfia_xL

Such order dependencies are at best annoying sources of potential errors. At worst, they can introduce circular

dependencies that make it impossible to mix together certain mixins. To avoid this, we need a mechanism that
allows mixins to call subclass operations in addition to superclass operations. Following the parameterization

approach that led us to mixins in the first place, we can include a second generic formal type parameter in mixins to

6-10

1OO05788 L

zcp_sont the subcMss.

For exsmpl¢, we want the Draft m_dn m use the subc_ss Balance_Of opera,on:

with Finance_Types; use Finance_Types;

generic

type SUPERCLASS is limited private;

with procedure Withdraw (From Account : in out SUPERCLASS;
The Amount : in MONEY) is <>;

type SUBCLASS is limited private;

with function Balance_Of (The_Account

with function Self (Parent

: SUBCLASS) return MONEY is <>;

: SUPERCLASS) return SUBCLASS is <>;

package Draft is

type MIXIN is limited private;

type ACCOUNT is
record

Parent : SUPERCLASS;

Extension : MIXIN;

end record;

procedure Set_Fee (Of_Account
To Fee

procedure Withdraw (From_Account :
The Amount :

: in out ACCOUNT;

: in MONEY) ;

in out ACCOUNT;

in MONEY) ;

function Self (This_Account : ACCOUNT) return SUBCLASS;

private

type MIXIN is
record

Overdraft_Fee
end record;

: MONEY := 10.00;

end Draft ;

The Withdraw operation for this mixin is then implemenwxl as follows:

procedure Withdraw (From Account : in out ACCOUNT;
The Amount : in MONEY) is

begin

if The Amount <- Balance Of(Self(From_Amount)) then

Finance.Withdraw (From_Account.Parent, The_Amount);
else

Finance. Withdraw (From_Account. Pa rent,
From Account. Extension. Overdraft_Fee) ;

end if;

end Withdraw;

No_ the use of _ function Self _ conve_ an ob_t of _ Draft .ACCOUNT _ the ap_oprm_ object of type

SUBCLASS. These odd Uttl¢ Self func_ons are the key to this approach. They allOW us _ use the subclass

operauo_ as _quhed.

The question is, of course, how can we implement such a Self function? Strangely enough, we can implement
it m terms of the supercl.ss Self function _ven as a generic formal parameten

function Self (This__Account : ACCOUNT) return SUBCLASS is

begin
return Self (This__Account.Parent) ;

end Self;

6-11

I0005788L

Obviously, this passing of lhe buck must end someplace. It ends with the root class, which we reimplcment as
follows:

generic

type SUBCLASS

package Root is

type CLASS is

procedure

is limited private;

limited private;

Initialize (The Object : in outCLASS;
To Self : in SUBCLASS);

function Self (This_Object : CLASS) return SUBCLASS;

private

type CLASS is
record

Self : SUBCLASS;

end record;

end Root;

Thus the mystery is resolved: the Self functions all ultimately access a Self component def'med in the root class.

Now, the astute reader may have noticed that we have inlroduced a strange sort of circularity here. The

represen_ion of say class built on the root class will include a component of the subclass type. However, when we
finish consm_ling a class from the root class and mixins, the result is the very subclass with which we need to
insmnli_e the mot class to begin withl To achieve this circularity, we must require that the subclass type be an

access type. The Self componem is then intended to be a pob_r back to the complete, composite subclass object.

(Actually, _ types are also needed to allow the Self functions to work properly with subclass procedures that
would otherwise have in out parameters.)

With inclusion of subclass parame_rs in mixins, we can now correctly implement the interest-bearing checking

account class using either order of mixin instantiation:

with Finance_Types; use Finance_Types;
package Interest Bearing_Checking is

type ACCOUNT is limited private;

procedure Open (The Account :
With Balance :

procedure Close (The_Account :

procedure Set_Rate (Of_Account :
To Rate

in out ACCOUNT;

in MONEY);

in out ACCOUNT);

in ACCOUNT;

in RATE);

private

type ACCOUNT_RECORD;

type ACCOUNT is access ACCOUNT_RECORD;

end Interest_Bearing_Checking;

An advantage of implementing a private _ as an access type is that the details of the type representation can be
defied to the package body by using an incomplete type definition for ACCOUNT RECORD in the private part of

the specification. The use of an access type also allows the use of in rather than in-out parameters in procedures

such as Set__Rate, which is necessary for the use of Self functions.

Circular type defmitlon is also achieved using the incomplete type defmitio? for. ACCOUN.T_ .RECORD..The

circle is closed by completing the definition of ACCOUNT_RECORD afterallthe._x/n lns l_tlanons m me pac,ga, ge
body. The figure on the next page shows the structureof an Interest_Bearxng__Checgxng. ACCOUNT ObjeCt

resulting from the following implementation:

10o06788k

6-12

An_Account: Interest_Bearing_Checking.ACCOUNT _

Interest_Bearing_Checking.ACCOUNT_RECORD

Checking_Draft.ACCOUNT

Checkina=_Finance.ACCOUNT
1

m

Checkir_. Root.CLASS I

ISelf : __

Overdm_._Fee :10.00

Rate :0.06
Interest :0.00

with Root, Monetary, Interest, Draft;

package body InterestBearing_Checking is

package Checking_Root is
new Root (SUBCLASS -> Interest_Bearing_Checking.ACCOUNT);

use Checking_Root;
package Checking_Finance is

new Monetary

(SUPERCLASS -> Checking_Root.CLASS,

SUBCLASS -> Interest_Bearing_Checking.ACCOUNT);

use Checking_Finance;

package Checking_Draft _s
new Draft

(SUPERCLASS -> Checking_Finance.ACCOUNT,

SUBCLASS -> Interest_Bearing_Checking.ACCOUNT);

function Balance_Of (The_Account : in Checking_Draft.ACCOUNT)
return MONEY;

-- call-through to Finance.Balance_Of

use Checking_Draft;

package Checking_Interest is
new Interest

(SUPERCLASS => Checking_Draft.ACCOUNT,

SUBCLASS => Interest_Bearing_Checking.ACCOUNT);

type ACCOUNT_RECORD is new Checking_Interest.ACCOUNT;

..°

end InterestBearing_Checking;

('Note that to simplify the instantiafions, I have taken advantage of the box defaults on the generic formal
subprogram parameters of the mixins.)

A disadvantage of using an access type is that interest-bearing checking accounts must be explicitly a]]ocmed.
We can do this as part of the Open operation:

100067_L

6-13

procedure Open (The Account : in out ACCOUNT;
With Balance : in MONEY) is

begin

if The Account /= null then

Close (The_Account);
end if;

The Account :- new ACCOUNT RECORD;
w

CheCking_Root. Initialize

(The_Object => The_Account.Parent.Parent.Parent,
To Self -> The Account);

Checking_Finance.Open (The_Account.Parent.Parent, With Balance);

end Open;

Note the use of the root Initialize operation to set _ Self componenL The figu_ on the pre_ous page
shows thesm_ of._r_d recordsand self_fm_m_ thatresultsfrom theallocationand initd_on of

Interest_Bearing_Checking. ACCOUNT ob_L

We also need to provide a way to deallocate interest-bearing checking accounts:

procedure Free is new Unchecked_Deallocation (ACCOUNT_RECORD,

procedure Close (The_Account

begin

Free(The_Account);
end Close;

: in out ACCOUNT) is

ACCOUNT) ;

All the rest of the interest-bearing checking account operations are inherited from one or the other of the mixin
instantiations.

SUPERTYPES

Subtyping is a _betitutability relationstu'p, i.e., an instance of
a aLbtype can stand in for an instance of its supertype. How
the subtype is implemented is totally irrelevant; all that

matters is that it have the right behavior so that it can be
substituted.

[Lalonde and Pugh 91]

Typically, the customer of a bank will have several accounts at that bank. Each bank account may be, say, a
savings account, a checking account or an interest-bearing checking account. To manage all the bank accounts of
one customer, we would like to create a bank account type that is the supertype of the types that represent the
various classes of accounts. We could then create lists of bank accounts, define bank account operations, etc.

As discussed in the previous sections, each class is implemented in Ada by a private type that is distinct from all
other class types. Nevertheless, we can still explicidy create a bank account supcrtyp¢:

with

with

package Bank is

Savings, Checking, Interest_Bearing_Checking;

Finance_Types; use Finance_Types;

type ACCOUNT_TYPE is (SAVINGS, CHECKING, INTEREST CHECKING);

type ACCOUNT (Kind
record

case Kind is

when SAVINGS

when CHECKING

when INTEREST

case;

end record;

procedure Open

procedure Close

: ACCOUNT TYPE :- SAVINGS) is

-> A_Savings_Account : Savings.ACCOUNT;

-> A_Checking_Account : Checking.ACCOUNT;

CHECKING -> An_Interest_Checking__Account

-- : Interest_Bearing_Checking.ACCOUNT;

(The Account : in out ACCOUNT;
With Balance : in MONEY);

(The_Account : in out

6-14

ACCOUNT);

I0005788L

procedure Deposit (Into_Account : in out ACCOUNT;
The Amount : in MONEY);

procedure Withdraw (From_Account : in out ACCOUNT;
The Amount : in MONEY);

function Balance_Of (The_Account : ACCOUNT) return MONEY;

end Bank;
s

The _2p¢ Bank. ACCOUNT defmcs a sup¢_ _ $_pe$ Bank. ACCOUNT (SAVINGS),
Bank .ACCOUNT (CHECKING) and Bank .ACCOUNT (INTEREST CHECKING). Each subtype corresponds to

one of the classes defined in lxevious sections. Note that a private t3Vpeis unnecessary here, because we wish to he
able to freely convert between the Bank. ACCOUNT subtypes and the classtypes.

The five operations defmcd in package Bank reflect the operations that me common to all the account types.
Semantically, we wish each supertype operation to mirror the implementation of the appropriate subtype operation.
For example, the statement

Bank.Withdraw (From_Account -> A, The_Amount -> X);

sho,dd be cq,,iv-lent to eider Savings .Withdraw, Checking .Withdraw or

Interest Bearing Checking.Withdraw, depe.ndmE on _ s_ of_- Since _esub_ of Acan. in

general, only'be determined at run-tame, we are enecuvety astnng tttat Bank. Withdraw oe aysu_m_cmly ootm_ to

the appropriate subtype operation.

We can achieve the effect of dynamic binding in Ada by implementing the bank account operations as

dispatcl_ng or cose-selec6on subprograms. For example:

procedure Withdraw (From_Account
The Amount

begin

: in out ACCOUNT;

: in MONEY) is

case Kind is

when SAVINGS ->

Savings.Withdraw (From_Account.A_Finance_Account, The_Amount);

when CHECKING ->

Checking.Withdraw (From_Account.A_Checking_Account, The Amount);

when INTEREST CHECKING ->

Interest_Bearing_Checking.Withdraw

(From_Account.An_Interest_Checking_Account, The_Amount);

end case;

end Withdraw;

Once we have the bank account supertype, we can create polymorphic data slructures and operations that can

handle all kinds of bank accounts. For example:

type CUSTOMER_ACCOUNTS is array(POSITIVE range <>) of Bank.ACCOUNT;

function Total_Assets_Of (The_Accounts : CUSTOMER_ACCOUNTS) return MONEY is

Total : MONEY :- 0.00;

begin

for I in The Accounts'range loop

Total :- T_tal + Bank.Balance_Of (The Accounts(I));

end loop;

return Total;

end Total Assets Of;

The function_fmcd above fi.ds_ toud_ts a _stomer h_ in_s a=onnts,_Sa._ of wh_ _.ds of

accounts they arc.

6-15

10005788L

It is important to note that to be included in a supertype, a class need only provide implementations for all the
operations defined for the supertype. The ways in which various subtype classes implement these operations do not
have to be related at all. For example, the Bank. ACCOUNT supertypc is oonsUllcted from a number of classes
implemented by various combinations of the mixins Monetary, Interest and Draft. These classes thus share
some common implementation, but this is not at all important to the construction of the supertype.

Thus, supertypes and superc_ are really distinct concepts. Looking at it another way, the supenype
provides a set of dispatching operations for those operations which are common to all its subtypes, regardless of how
those operations may be implemented by the subtype classes or how the subtypes may be represented. A supertype
that is constructed in this way from a given list of subtype classes is said to be the umon type of those classes. Thus
we have constructed a bank account supertype that is the union of the savings, checking and interest-bearing
checkingaccount classes.

It was noted earlier that the use of mixins causes a collapse of the original class hierarchy. Using union types,
however, we can still form a type hierarchy by appropriately grouping classes. As well as the Bank .ACCOUHT
union type,such a type hierarchyforaccountclassescould includethe union of the savingsand interest-bearing
checkingaccountclasses(an investmentsupertypetreatinginterest-bearingchecking accountsas savingsaccounts)
and the union of the checking and interest-bearingchecking accountclasses(a cash account supertypetreating
interest-bearingcheckingaccountsascheckingaccounts).Note how itispossiblefora classtobe includedinmore
than one union type.

CONSIDERATIONS FOR ADA 9X

There is a recognized need for improving Ada's support for
data abstraction, and the construction of programs from pre-
existing components.

[Ad_gX 91m]

The mixin-based style described in this paper combines the benefits of object-oriented mixins with the
advantages of explicit parametcrization through generics. With superclass and subclass par_., et_tion: mixins are
completely independent software components that can be mixed and matched m many combmauons. This leads to a
powerful paradigm known as parame_ programming that promotes highly reusable code (see, for example,
[Goguen 84; Seidewitz md Sm.,rk 91l),

Unfortunately, as the reader can see from the examples in this paper, this style is awkward in places with
Ada 83. In particular, the following areas especially need to be addressed in Ada 9X:

1. There needs to be a way to create a subclass type by simple extension of a class type and to pararneterize this
extension with a mixin. The proposed Ada 9X record extension mechanism lAd,9X 91b] fills this need admirably
well.

, There needs to be a simpler way to achieve self-reference during the combination of mixins. This need seems
to be filled by the proposed mechanism in Ada 9X to allow type extensions as generic formal type parameters
[Ada9X 91b]. This would probably necessitate the use of nested generics to allow the mixin type to be an
extension of the SUPERCLASS typeparameter and the SUBCLASS type parameter to be an extension of the
mixin type. Such a consuuction would, however, eliminate the need for Self functions.

. There needs to be a mechanism for constructing supertypes without having to explicitly code dispatch
operations. Ada 9X does provide an automatic dispatching capability using "tagged records" [Ada9X91b].
However, this capability can only be used if the subtypes are implemented as subclasses (type extensions) of the
supertype. This perpetuates the confusion of superclass and supertype.

Thus the proposed object-oriented features for Ada 9X largely support the mixin style described in this paper.
Unfortunately, the tagged record mechanism confuses type extension and dispatchin.g. This is analogous to the
equation of superclasses and supertypes in most typed object-oriented programming languages (such as C++
[Stroustrup 86]).

Requiring supertypes to be superclasses is inconvenient when we are using generic mixins m construct classes.
and wish to create a type hierarchy after the fact. Perhaps a better model for Ada 9X would be the "abstract type"
mechanism of the languages Emerald IBLsckmd. 871and POOL-I lAmericastudvan clefLinden90]. Even with the currently
proposed Ada 9X featm'es, however, a generics-based approach to mixins, such as that presented in this paper, could
be an important conm'bution of Ada 9X back to the object-oriented programming community.

ACKNOWLEDGEMENT

I would like to thank my colleague Mike Stark for a number of good suggestions that greatly improved the
clarity of presentation of this paper.

6-16

10006788L

REFERENCES

Ada9X 91a

Ada9X 91b

America and van der Linden 90

Black et al. 87

Bracha and Cook 90

Goguen 84

Goldberg and Robson 83

Lalonde and Pugh 91

Rentsch 82

Seidewitz 91

Seidewitz and Stark 91

Stroustrup 86

Wegner 87

DRAFT Mapping Rationale Document, Ada 9X Project Report, February
1991

Ada 9X Mapping Document, Draft Ada 9X Project Report (2 volumes),
August 1991

Pierre America and Frank van der Linden, "A Parallel Object-Oriented
Language with Inheritance and Subtyping', Proceedings of the Conference
on Object-Oriented Programming System. Languages. and Applications I
European Conference on Object-Oriented Programming, SIGPLAN
Notices, October 1990

Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy and Larry Carter,
"Distribution and Abstract Types in Emerald', IEEE Transactions on
Software Engineering, January 1987

Gilad Braeha and William Coc_ "Mixin-Based Inheritance', Proceedings
of the Conference on Object-Oriented Programming System, Languages,
and Applications I European Conference on Object-Oriented Programming,
SIGPLAN Notices, October 1990

Joseph A..Go_n, "Parameterized Programming", IEEE Transactions on
Software Engineering, September 1984

Adele Goldberg and David Robson, Smalltalk-80: The Language and its
Implementation, Addison-Wesley, 1983

Will Lal.zmde and John Pugh, "Subelassing _ Subtyping _ Is-a', Journal of
Object-Oriented Programming, January 1991

"Object-Oriented Programming', SIGPLANNotices, September 1982

Ed Seidewitz, "Object-Oriented Programming through Type Extension in
Ada 9X', Ada Letters, MarclVApri] 1991

Ed Seidewitz and Mike Stark, "An Object-Oriented Approach to
Parametexized Software in Ada", Proceedings of the Eighth Washington
Ada Sympos/um, June 1991

Bjarne Stroustrup, The C ++ Programming Language, Addison-Wesley,
1986

Peter Wegner, "The Object-Oriented Classification Paradigm", in Research
Directions in Object-Oriented Programming, ed. by Bruce S hriver and
Peter Wegnex, The MIT Press, 1987

10005711_.

6-17

